Lorem ipsum dolor sit amet, consectetur adipiscing elit. Test link

قانون أساسي جديد يفك قيود الطاقة الاندماجية

قام الفيزيائيون في EPFL ، ضمن تعاون أوروبي كبير ، بمراجعة أحد القوانين الأساسية التي كانت أساسية لأبحاث البلازما والاندماج لأكثر من ثلاثة عقود

قانون أساسي جديد يفك قيود الطاقة الاندماجية

رسم توضيحي للبلازما المتأينة الشبيهة بالغيوم في مفاعل الاندماج ITER tokamak
رسم توضيحي للبلازما المتأينة الشبيهة بالغيوم في مفاعل الاندماج ITER tokamak

قام الفيزيائيون في EPFL ، ضمن تعاون أوروبي كبير ، بمراجعة أحد القوانين الأساسية التي كانت أساسية لأبحاث البلازما والاندماج لأكثر من ثلاثة عقود ، حتى أنها تحكم تصميم المشاريع العملاقة مثل ITER. يوضح التحديث أنه يمكننا في الواقع استخدام المزيد من وقود الهيدروجين بأمان في مفاعلات الاندماج ، وبالتالي الحصول على طاقة أكثر مما كان يعتقد سابقًا.

الاندماج هو أحد مصادر الطاقة المستقبلية الواعدة. إنه ينطوي على دمج نواتين ذريتين في نواة واحدة ، وبالتالي إطلاق كميات هائلة من الطاقة. في الواقع ، نشعر بالاندماج كل يوم: يأتي دفء الشمس من اندماج نوى الهيدروجين في ذرات هيليوم أثقل.

يوجد حاليًا مشروع دولي ضخم لبحوث الاندماج يسمى ITER يسعى إلى تكرار عمليات اندماج الشمس لتوليد الطاقة على الأرض. هدفها هو إنتاج بلازما عالية الحرارة توفر البيئة المناسبة لحدوث الاندماج ، وإنتاج الطاقة.

البلازما - حالة من المادة المتأينة تشبه الغاز - تتكون من نوى موجبة الشحنة وإلكترونات سالبة الشحنة ، وهي أقل كثافة بمليون مرة من الهواء الذي نتنفسه. تتشكل البلازما من خلال تعريض "وقود الاندماج" - ذرات الهيدروجين - لدرجات حرارة عالية للغاية (10 أضعاف درجة حرارة لب الشمس) ، مما يجبر الإلكترونات على الانفصال عن نواتها الذرية. في مفاعل الاندماج ، تحدث العملية داخل هيكل دائري الشكل ("حلقي") يسمى " توكاماك ".

مفاعل الاندماج النووي الحراري توكاماك في مركز البلازما السويسري
مفاعل الاندماج النووي الحراري توكاماك في مركز البلازما السويسري

يقول باولو ريتشي من مركز البلازما السويسري ، أحد المعاهد البحثية الرائدة عالميًا في مجال الاندماج الموجود في École polytechnique fédérale de Lausanne (EPFL).

من خلال تعاون أوروبي كبير ، أصدر فريق Ricci الآن دراسة لتحديث المبدأ التأسيسي لتوليد البلازما - وإظهار أن ITER tokamak القادم يمكن أن يعمل فعليًا مع ضعف كمية الهيدروجين وبالتالي توليد طاقة اندماج أكثر مما كان يعتقد سابقًا.

يقول ريتشي: "أحد القيود في صنع البلازما داخل توكاماك هو كمية وقود الهيدروجين التي يمكنك حقنها فيه". "منذ الأيام الأولى للاندماج ، عرفنا أنه إذا حاولت زيادة كثافة الوقود ، فسيحدث في مرحلة ما ما نسميه" اضطرابًا "- فأنت في الأساس تفقد الحصر تمامًا ، وتذهب البلازما أينما كان. لذلك في الثمانينيات ، كان الناس يحاولون التوصل إلى نوع من القانون يمكن أن يتنبأ بأقصى كثافة للهيدروجين يمكنك وضعها داخل توكاماك ".

جاءت الإجابة في عام 1988 ، عندما نشر عالم الاندماج مارتن غرينوالد قانونًا مشهورًا يربط كثافة الوقود بنصف قطر توكاماك الصغير (نصف قطر الدائرة الداخلية للدونات) والتيار الذي يتدفق في البلازما داخل توكاماك. منذ ذلك الحين ، أصبح "حد Greenwald" مبدأً أساسياً لبحوث الاندماج. في الواقع ، تعتمد إستراتيجية ITER لبناء التوكاماك على ذلك.

يوضح ريتشي: "اشتق غرينوالد القانون بشكل تجريبي ، وهذا تمامًا من البيانات التجريبية - وليست نظرية مُختبرة ، أو ما نسميه" المبادئ الأولى ". "ومع ذلك ، نجح الحد بشكل جيد في البحث. وفي بعض الحالات ، مثل DEMO (خليفة ITER) ، تشكل هذه المعادلة حدًا كبيرًا لتشغيلها لأنها تنص على أنه لا يمكنك زيادة كثافة الوقود فوق مستوى معين ".

من خلال العمل مع فرق توكاماك ، صمم مركز البلازما السويسري تجربة حيث كان من الممكن استخدام تقنية متطورة للغاية للتحكم بدقة في كمية الوقود المحقون في توكاماك. تم إجراء التجارب الهائلة في أكبر توكاماك في العالم ، Torus الأوروبية المشتركة (JET) في المملكة المتحدة ، بالإضافة إلى ترقية ASDEX في ألمانيا (معهد ماكس بلانك) و TCV tokamak الخاص بـ EPFL. تم تحقيق هذا الجهد التجريبي الكبير من قبل EUROfusion Consortium ، وهي المنظمة الأوروبية التي تنسق أبحاث الاندماج في أوروبا والتي يشارك فيها EPFL الآن من خلال معهد Max Planck لفيزياء البلازما في ألمانيا.

في الوقت نفسه ، بدأ ماوريتسيو جياكومين ، طالب دكتوراه في مجموعة ريتشي ، في تحليل العمليات الفيزيائية التي تحد من كثافة التوكاماك ، من أجل استنباط قانون المبادئ الأولية الذي يمكن أن يربط بين كثافة الوقود وحجم التوكاماك. جزء من ذلك يتضمن استخدام محاكاة متقدمة للبلازما باستخدام نموذج حاسوبي.

يقول ريتشي: "تستغل عمليات المحاكاة بعضًا من أكبر أجهزة الكمبيوتر في العالم ، مثل تلك التي أتاحتها CSCS والمركز الوطني السويسري للحوسبة الفائقة و EUROfusion". "وما وجدناه ، من خلال عمليات المحاكاة التي أجريناها ، هو أنه كلما أضفت المزيد من الوقود إلى البلازما ، تنتقل أجزاء منه من الطبقة الباردة الخارجية لتوكاماك ، الحدود ، إلى جوهرها ، لأن البلازما تصبح أكثر اضطرابًا. بعد ذلك ، على عكس الأسلاك النحاسية الكهربائية ، التي تصبح أكثر مقاومة عند تسخينها ، تصبح البلازما أكثر مقاومة عندما تبرد. لذا ، فكلما زاد الوقود الذي تضعه فيه عند نفس درجة الحرارة ، تبرد أجزاء منه - ويزداد صعوبة تدفق التيار في البلازما ، مما قد يؤدي إلى حدوث اضطراب ".

كان هذا تحديا لمحاكاة. يقول ريتشي: "الاضطراب في السائل هو في الواقع أهم قضية مفتوحة في الفيزياء الكلاسيكية". "لكن الاضطراب في البلازما أكثر تعقيدًا لأن لديك أيضًا مجالات كهرومغناطيسية."

في النهاية ، تمكن ريتشي وزملاؤه من فك الشفرة ووضع "قلم على ورقة" لاشتقاق معادلة جديدة للحد الأقصى للوقود في توكاماك ، والتي تتماشى جيدًا مع التجارب. نُشر في مجلة Physical Review Letters في 6 مايو 2022 ، وهو ينصف حدود Greenwald ، من خلال الاقتراب منه ، ولكنه يحدّثها بطرق مهمة.

تفترض المعادلة الجديدة أنه يمكن رفع حد Greenwald مرتين تقريبًا من حيث الوقود في ITER ؛ وهذا يعني أن التوكاماك مثل ITER يمكنها في الواقع استخدام ضعف كمية الوقود لإنتاج البلازما دون القلق من الاضطرابات. يقول ريتشي: "هذا مهم لأنه يوضح أن الكثافة التي يمكنك تحقيقها في توكاماك تزداد مع القوة التي تحتاجها لتشغيله". "في الواقع ، سيعمل DEMO بقوة أعلى بكثير من tokamaks و ITER الحاليين ، مما يعني أنه يمكنك إضافة المزيد من كثافة الوقود دون الحد من الإخراج ، على عكس قانون Greenwald. وهذه أخبار جيدة للغاية ".

المرجع: "مقياس حد الكثافة من المبادئ الأولى في توكاماك استنادًا إلى النقل المضطرب للحافة وانعكاساته على ITER" بقلم M. Giacomin ، A. Pau ، P. Ricci ، O. Sauter ، T. Eich ، فريق ترقية ASDEX ، مساهمو JET ، وفريق TCV ، 6 مايو 2022 ، خطابات المراجعة المادية .

DOI: 10.1103 / PhysRevLett.128.185003

قائمة المساهمين

  • مركز البلازما السويسري EPFL
  • معهد ماكس بلانك لفيزياء البلازما
  • فريق EPFL TCV
  • فريق ترقية ASDEX
  • المساهمون في JET

إرسال تعليق